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Abstract 

 This research develops Code White, a hardware-implemented trusted execution 

mechanism for the Symbian mobile operating system.  Code White combines a signed 

whitelist approach with the execution prevention technology offered by the ARM 

architecture.  Testing shows that it prevents all untrusted user applications from executing 

while allowing all trusted applications to load and run.  Performance testing in contrast 

with an unmodified Symbian system shows that the difference in load time increases 

linearly as the application file size increases.  The predicted load time for an application 

with a one megabyte code section remains well below one second, ensuring uninterrupted 

experience for the user.   

Smartphones have proven to be invaluable to military, civic, and business users 

due in a large part to their ability to execute code just like any desktop computer can.  

While many useful applications have been developed for these users, numerous malicious 

programs have also surfaced.  And while smartphones have desktop-like capabilities to 

execute software, they do not have the same resources to scan for malware.  More 

efficient means, like Code White, which minimize resource usage are needed to protect 

the data and capabilities found in smartphones.   
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CODE WHITE: A SIGNED CODE PROTECTION MECHANISM FOR 

SMARTPHONES 

I. Introduction 

1.1 Research Domain 

Mobile phones are ubiquitous devices.  Once only a means to extend the reach of 

the wired phone system, the cell phone has become much more.  It carries many 

additional capabilities, like sending written messages, storing personal information, 

providing location and direction information, accessing web content, performing business 

transactions, unlocking car doors, and changing channels on the television.  The list of 

features and capabilities continues to grow.  While there are varying views of what 

constitutes a smartphone, for this research a smartphone is a mobile phone that can 

execute third party code.   

1.2 Problem Statement 

To the general public, mobile phones are much more than a convenient means to 

communicate; they have become almost another appendage.  They often hold much of the 

critical information a person has.  This encapsulation of information and identity is also 

an essential resource in business, civic, and military operations.  Since the release of the 

iPhone in 2007, mobile users are now looking for one more capability in their phones: the 

ability to run software programs like they can on their personal computers.  Given that, 

attackers have every incentive to develop malware to infect and exploit these small, ever-
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present, always-on, ready-to-execute-your-code smartphones to gain access to 

information and identities and thus to the capabilities of their respective users. 

1.3 Research Goals 

The goal of this research is to increase smartphone security by identifying and 

adapting a novel protection mechanism developed for the general purpose computing 

domain for use in a smartphone.  The method is tested to verify it protects the cell phone 

from malware and determine whether the modified phone’s performance is acceptable 

compared to the performance of an unmodified phone. 

Chapter 2 discusses current literature on smartphones, their threats and 

vulnerabilities, and protection methods for them.  Chapter 3 introduces the novel 

protection mechanism for smartphones called Code White.  Chapter 4 evaluates Code 

White’s performance.  Finally, Chapter 5 discusses these results as well as future areas of 

research.  
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II. Smartphones and Mobile Malware 

This chapter provides an overview of smartphone capabilities, vulnerabilities, 

threats, and protection mechanisms.   

2.1 Incentives to Attack 

The capabilities of modern cell phones come at the price of a host of security 

vulnerabilities.  Despite that, a majority of survey respondents acknowledged they would 

prefer to lose their wallet than their cell phone [Glo09].  Mobile phones combine a 

number of features that make them invaluable as well as extremely vulnerable.  They 

provide the capability to connect to the rest of the world, including friends, family, and 

emergency services.  They hold valuable information: personal information like contact 

information, address book, current location as well as financial information like bank 

account and credit card numbers to name but two categories.  They are small which 

makes them easy to steal or lose.  They communicate via many different standards like 

cellular telephony, Bluetooth and WiFi.  They can be updated or even modified by their 

users.  Finally, so called smartphones can run third party code that extends their 

capabilities.   

Cell phone attacks have been possible since the introduction of cell phones.  They 

began with simple denial of service attacks, including RF jamming.  With the advent of 

messaging capabilities, additional vulnerabilities arose.  Each phone sent to market has its 

own code for handling incoming messages.  Attackers use specially-crafted messages to 

exploit vulnerabilities in this code to disable the phone or accomplish some other goal.  
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But the greatest leap in malicious potential is the ability to run custom applications.  

Where previous attacks were constrained to conform to a particular vector (like SMS 

message size limitations [Rob03]), attacks now can be written into programs and 

downloaded for direct execution.  A hacker must still defeat any code protections on the 

device, but the scope of possibilities available is much greater.  Hackers need only access 

a mobile OS’ API and the functionality it provides.  

Another incentive for malware development on mobile devices is through 

premium services via the Short Messaging Service (SMS).  By sending a message to a 

specific number (usually shorter than a standard number), the account of the sending 

phone is charged a fee for each message sent.  A criminal can lease a short number and 

release malware that causes infected phones to send periodic messages to the number in 

question, unbeknownst to their owners.  Since many premium fee services are 

international and the perpetrator can collect payment from the number provider before 

their victims receive billing statements, this crime is very difficult to prosecute.  [Gos09]  

There are a number of ways to prevent messages from being sent; including having the 

user acknowledge each message, but such measures can be subverted.  For example, a 

message promising a pornographic image if the user selects “yes” to show that they are 

18 or older. 

2.2 Threats 

The unique nature and vulnerabilities of smartphones make them a prime target 

for malware.  This section discusses the goals, methods, and features of smartphone-

targeting malware. 
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The first known mobile malware was the Cabir worm, developed as a proof of 

concept in 2004 by the hacker group 29A [Gos09].  It contained no malicious payload, 

only the ability to replicate itself and propagate via Bluetooth on Symbian phones.  Since 

2004, mobile malware development has branched out to different platforms with different 

goals.  It is beneficial to create a taxonomy of attacks and thereby classify the many 

variations of malicious code found in the wild.  The following sections discuss various 

criteria for categorizing different types of malware.  The resultant taxonomy is shown in 

Table 1.  

Table 1 - A Taxonomy of Mobile Malware 

 

2.2.1 Attacks Defined by Target or Protocol 

The first category of malware is based on the attack target within the mobile 

network (i.e., call center, mobile phone, base station).  Another distinguishes between 

Attack Example Types Example Attacks

Target
Phone
Network Servers

Theft, Phone Malware, Jamming
Server Malware

Protocol Layer
Application Layer
Network Layer

Mobile Malware
Malformed Messages

Propagation Method

SMS/MMS
Bluetooth
Wifi
Removable Media
Email

Trojan-SMS.J2ME
Cabir Worm
Ikee
Infojack
FakePlayer

Goal
Monetary Gain
DoS
Spying

FakePlayer
Appdisabler
InfoJack

OS/Platform

Symbian
iOS
Win Mobile
Android
Java

Viver, Yxe
Ikee
Cxover
Fakeplayer
Trojan-SMS.J2ME

Polymorphism Polymorphic Code Pmcryptic.A
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attacks based on the protocol layer targeted (i.e., jamming on the physical layer, 

spoofing).  This includes attacks against the mobile device itself as well as the 

applications running on it.  [Guo07] 

2.2.2 Attacks Defined by Propagation method 

Another category focuses on propagation methods.  Modern phones communicate 

via a variety of media and standards beginning with the mobile networks themselves.  

The category for these networks is further extensible to include communication type: 

Short Message Service (SMS), Multimedia Messaging Services (MMS), and data 

services (internet connectivity) to name a few.  Many phones also have the capability to 

access WiFi or WiMax networks for additional data services.  For shorter transmissions, 

(normally to peer phones or peripherals) many include native Bluetooth capabilities.  

Most also connect to and synchronize with personal computers, typically via USB or 

infrared interfaces.  Finally, removable storage and peripherals provides an avenue 

through which malware may enter.  From the messaging system to memory cards to 

Common Access Cards, there are many ways to reach victim phones.  [Che07] 

Bluetooth is a ready attack vector as many users leave it enabled on their phone in 

a discoverable mode which is precisely how the first virus written for smartphones was 

propagated.  In 2005, the Cabir worm made news when an outbreak was discovered at the 

World Athletic Championships in Helsinki, Finland.  No damage was done to the victim 

phones, but the dozens of infections at a single event opened the eyes of users and 

developers around the globe.  [Ley05] 
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With an increase in text and multimedia messaging, SMS and MMS grow in 

popularity as methods for malware transmission.  Figure 1 shows the growth of SMS 

messaging in the United States.  In addition to Bluetooth, the Mabir variant of the Cabir 

worm uses MMS to propagate.  Upon receipt of any SMS or MMS message, an infected 

phone replies via MMS with a message that contains only the installation file for the 

worm.  If the user thinks it is a reply to their recent message and opens the file, the worm 

is installed in an autostart mode  [Wor09]. 

 

Figure 1 - SMS Text Messages Sent Monthly in USA in Billions (Wikipedia) 

The InfoJack trojan is an example of malware that propagates via memory cards.  

Its creator packed it with legitimate executable files to encourage distribution.  Once 

executed on a WinCE phone, the trojan installs itself and makes modifications to the 
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operating system, including one that allows further installations without prompting the 

user.  It also copies itself to any attached media cards and sets itself as an autorun file.  If 

another user subsequently puts the media card into another WinCE phone, the process 

repeats.  InfoJack attempts to contact its host website, upload information from the phone 

and download any updates.  The website has since been taken down [Sha08][Gos09]. 

2.2.3 Attacks Defined by Goal 

Another way to differentiate malware is by their attack goal.  Malware has many 

objectives, but a leading one is theft.  This can be direct monetary theft as discussed 

above for premium numbers or information theft which can indirectly be used for 

monetary gain.  A virus can steal and destroy data from phones, run up bills by making 

calls to premium-rate numbers, record conversations where personal data and credit card 

numbers are exchanged, and even get a phone camera to spy on its owner and transmit 

photos [Bie05].  Other attack types include Denial of Service (direct or indirect via 

battery drain), hijacking, and others.  These attacks can all be aligned with the three 

essential elements of computer security: confidentiality, integrity, and availability (CIA).  

Information theft attacks breach confidentiality, hijacking breaks integrity, and DoS 

attacks impede availability [Dag04].  

In addition to analyzing the goal of the malware, the targeting methods can also 

be a basis for categorization.  Some malware is packaged with a specific pre-determined 

target.  Others choose targets from infected hosts by sending copies of themselves to 

contacts listed in a victim’s phone.  Others choose targets randomly, propagating to 

devices at randomly generated numbers or addresses [Che07].  
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The Multidropper Trojan infects Symbian phones and installs a number of other 

programs on each device.  One is the Kiazha Trojan which creates an account for the 

victim user on a remote server.  It forwards the victim’s messages and personal data to 

the server and deletes them from the phone.  It then displays a message to the user 

demanding payment for the return of the stolen data [Tro08].   This is an example of 

malware created with the end goal of monetary gain. 

Malware with a different goal is the Kblock Trojan.  After being installed it locks 

the keypad.  To clear the malware requires the phone to be reset to its factory default state 

which deletes all personal information [Sym09]. 

 

Figure 2 - Global Smartphone Sales by OS Q2 2009 (Source: Gartner) 

2.2.4 Other Characteristics 

Other useful distinctions between malware can be made as well.  Examining the 

market share of the various mobile operating systems provides insight into the trends in 

Smartphone threats.  Figure 2 shows Q2 2009 sales data for Smartphones around the 

Android
2% Blackberry

19%

iphone
13%Symbian

51%

Windows
9%

Other
6%

Global Smartphone Sales by Operating System Q2 
2009
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world by operating system.  Notably, the Symbian OS has sold more phones than all the 

others combined.   

Figure 3 shows the distribution of mobile malware families by the operating 

systems they target.  Symbian OS is the clear leader due to its large market presence 

which supports the correlation between malware targeting and targeted platform 

distribution.  The Symbian OS has more threats than any other because of its wider 

distribution.  Likewise, Java viruses are more prevalent since the Java Micro Edition 

(J2ME) provides a platform for a virus to run on many systems without being 

individually rewritten.  

 

Figure 3 - Malware by Operating System [Gos09] 

To date, relatively little malware has targeted iPhone OS, Google’s Android, or 

Blackberry OS.  Possible reasons include market share, length of time on the market 

(Android 1.0 was released in Oct 2008), capability of writing malware for platforms that 

run on top of those platforms, and the security features implemented to prevent malware.  

62
31

3
7

3

Mobile Malware Families by 
Operating System

Symbian
J2ME
Python
Windows
Sgold
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The latter two are discussed in more detail later in this chapter.  No doubt, more malware 

for these phones will emerge in time. 

Another distinguishing feature of mobile malware is polymorphism (i.e., code that 

modifies itself each time it makes a copy to avoid detection).  One polymorphic mobile 

worm is Pmcryptic.A which infects WinCE phones.  It runs a variety of payloads from 

meaningless popups to dialing premium numbers to file deletion.  In addition, it 

replicates itself multiple times on the device, including on each removable storage device 

it finds.  Each replication is appended with up to 255 bytes of random data.  This weak 

form of polymorphism makes it more difficult to detect by scanning [Fer08].  While only 

a few mobile viruses employ polymorphism, more are expected as mobile malware 

matures.   

2.3 Current Research on Mobile Phone Protections 

Given the potential damages discussed above and the ramifications to users, many 

options to protect Smartphones and the data they contain are being explored.  This 

section discusses a number of protection strategies and detection mechanisms aimed at 

securing Smartphones from misuse. 

2.3.1 Antivirus and Mobile Phones 

Before discussing mobile security, it is helpful to review popular protection 

measures from the realm of general purpose computing and evaluate those measures from 

the standpoint of mobile computing.  A protection many consider most analogous to 

computer security is the use of antivirus (AV) software.   
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AV software is a brute force approach to security.  The software scans all files on 

an information system for the presence of malware, and repeats the process often.  The 

frequency of scanning can be adjusted, but typically are daily or weekly. 

Consider the differences between phones and desktop computers.  Rather than a 

multi-gigahertz processor, a top of the line CPU in a phone runs a few hundred 

megahertz.  In place of virtually limitless power from a wall socket, batteries supply a 

phone with the majority of its power.  There are similar limitations in other resources 

which make AV unattractive for mobile use.  Though phones generally have significantly 

fewer files than a typical PC and have the recently added capability to multitask, they 

cannot provide the expected performance in their primary services (calling, messaging, 

etc) and run an AV profile like that used on a desktop.  Additionally, an AV program on a 

phone is not as effective as one running on a desktop since its effectiveness is based on 

the currency of its signature.  Depending on factors such as range, reception, and 

roaming, the delivery of these files may not be timely for a given phone. 

Though antivirus is not a good solution for mobile devices, there is still a need for 

host-based protection [Mie06].  Cellular networks provide some protections external to 

the mobile device, but they are no replacement for security measures on the device itself.  

The following protections are currently being used or are being investigated as a way to 

protect mobile phones and the data they process. 

2.3.2 Application Protection 

Third party applications pose one of the greatest risks to the smartphone.  Some 

are poorly written and introduce security holes and instability to the system.  Others are 
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malicious.  Many methods protect the smartphone from errant application activity.  Table 

2 shows two of the most popular application protection measures as implemented by five 

of the top mobile operating systems: sandboxing and signing. 

Table 2 - Security Features of Mobile Operating Systems 

OS Sandboxing Signing 
Android All applications run in JVM All must be signed by author [Sig10] 
Blackberry All applications run in JVM except 

included core apps  
All (signing authority based on 
capabilities) [Sch09] 

iPhone OS Native installation, sandboxed via file 
permissions, memory space, etc.  
[The10] 

All 

Symbian Not required.  Apps can be native or 
run on Java, etc 

All (signing authority based on 
capabilities) 

Windows Not required.  Apps can be native or 
run on Java, etc  

Yes, but user can override 

2.3.2.1 Sandboxing 

Sandboxing, or virtualization, implements a computing environment within 

another computing environment.  The virtual machine provides resources and acts as if it 

were running directly on hardware though it is fully contained by the host system.  In the 

case of a guest system crash, the host maintains its stability, and merely terminates the 

guest environment process.  Additionally, the host prevents the guest from accessing 

critical files and data on the host system.  A phone may also have multiple virtualization 

layers implemented.  This allows a user to use their phone for multiple roles (like 

personal and business use) and may allow some applications to only access data or 

resources for a single role [Kro09]. 

Five of the top mobile operating systems sandboxing implementations are shown 

in Table 2.  Android and Blackberry require all third party applications to execute within 



   

14 
 

a Java virtual machine.  The iPhone OS installs all applications natively, but sandboxes 

them via virtual memory techniques and file protection measures.  Finally, Symbian and 

Windows do not require sandboxing, though it is supported through Java and others. 

2.3.2.2 Application Signing 

Application signing affixes a unique signature to executable code for 

identification purposes.  The signature can serve a number of purposes including 

validating the code integrity and providing an audit trail back to the original author.  

There are various signature types, but most current implementations use cryptographic 

public keys issued by a certification authority (CA).  The CA issues the requesting party a 

unique public and private key pair.  One key will identify the other, but cannot easily be 

deduced by having the other.  The keys are used to sign the files in the following fashion: 

the signing authority computes a one way hash of the file.  The signer’s private key is 

used to encrypt the hash and any other desired information but generally not the code 

itself for efficiency reasons.  The output is the actual signature.  The signature is included 

in the executable file itself.   

All major mobile OSes require some form of application signing.  Usually they 

require that developers obtain and use a unique signature for identification purposes.  

However, some (Blackberry for instance) require that if an application makes use of 

certain critical APIs, the app must be vetted and signed by the OS’ own authority.  As for 

application installation, most OSes reject unsigned or malsigned applications.  Windows 

however, allows installation if the user overrides the onscreen warning. 
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Application signing is not completely effective.  Malware authors have 

successfully signed their wares before.  The Yxe, Album, CommDN, and NMPlugin 

worms are all examples of malware that has been signed by Symbian.  Malware authors 

take advantage of inexpensive signing fees, low audit rates, and an emphasis on stability 

over security in the application process to have their wares signed. [Jar07][Apv10]. 

Akin to application signing is application certification, which is is based on the 

capabilities of a prospective application as opposed to its signature.  Many mobile OS’ 

require applications to identify what system capabilities they require access to at signing 

time (like Symbian Signed).  Kirin, a proof-of-concept certification method implements 

an application installer which checks all application capabilities at install time and looks 

for potentially dangerous capability combinations (for instance, an application that can 

start on boot, read geographic location and access the Internet could be a malicious 

tracker).  Resource consumption is small, since this service is only invoked at install time 

[Enc09]. 

2.3.3 Anomaly Detection 

One method used to decrease risk is to use observable behavior from the phone to 

determine if its activity is questionable.  Within this category of protection, there are two 

variations: anomaly detection and misuse detection.  Anomaly detection defines a 

“normal” profile for a system and looks for discrepancies; misuse detection uses rules to 

designate states as “good” or “bad”.  

A common consideration for anomaly and misuse detection is determining the 

best place to perform the detection.  If detection and analysis are performed on the mobile 
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device, the system has the same disadvantage as a standard antivirus program – excessive 

resource use.  Much of the research in this area mitigates these limitations by using a 

hybrid host-based and network-based solution.  This combines the more ample resources 

of the network with the granularity of host-based reporting.  In general, each mobile 

device is programmed with an agent that sends small reports on activities and 

characteristics such as resource usage and communications sessions.  Table 3 lists 

examples of potential indicators available in these reports which are periodically 

forwarded to a server on the network.  The server analyzes not only the individual device 

reports it receives, but backbone-provided data and trends as well.  In most 

implementations, the server contacts devices as necessary, passing instructions to protect 

them from attack (like blacklisting infected phones [Che07][Sch091]. 

Table 3 - Example Reportable Features of a Mobile Device 

Data Category Example Data 
Computing Resources CPU utilization, RAM utilization 
Operating Entities Process count, Thread count 
Communication Channels Bluetooth Connections, TX status 
Messaging Statistics SMS/MMS messages sent 
User Information User activity length, inactivity length 
Other Hardware Battery charge 

 

The benefits of outsourcing the analysis from the devices themselves includes 

saving battery power and achieving a broader view than any one device itself is capable 

of via a proxy.  

While useful in minimizing damage caused by mobile malware, these methods are 

not proactive.  Detection can only occur after an infection or misuse has already occurred.  
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These methods try to limit continued misuse and the infection of other phones but cannot 

prevent the infection itself.  One system requires ~20% of all phones to be infected before 

detection and mitigation [Che07].    

2.3.4 Other Methods 

Three other types of protection have been proposed [Guo07].  They suggest a 

reduction in the attackable “surface” of the phone, an example of which is turning off the 

non-signaling computing functions when not actively used.  Second, they recommend 

hardening the OS itself which includes incorporating measures that ensure user 

notification when changes are made to the phone.  Third, they advocate hardening the 

device hardware, specifically suggesting the use of Trusted Platform Modules to protect 

device configuration and data.  Graphical Turing Tests have also been proposed which 

distinguish between human and computer response by the ability to solve a visual puzzle 

[Xie09].  These puzzles specifically protect the phone’s messaging capability and so 

detect and prevent the spread of malware.  

2.3.5 SecureQEMU 

The security features above add a measure of security to the systems they protect.  

However, they have a significant undesirable characteristic, they are reactive in the case 

of anomaly detection, or they require user interaction like the Graphical Turing Test.  

They mitigate malicious activity once it is observed and identified but the underlying 

problem is the identification of malware itself, which may require human interaction to 

make the determination.  The anomaly detection method falls short because it is blacklist 

driven - it requires that an activity match undesired characteristics, and those 
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characteristics must be defined a priori.  The Turing Test requires no knowledge 

beforehand, but involves its user in all decisions. 

SecureQEMU does not have these limitations.  It is implemented in the emulation 

layer and requires that all code be signed at the page level and checked against a whitelist 

of known good code, resulting in a closed system by default.  Pages that match known 

good signatures are allowed to execute while those that do not are ignored, with no user 

interaction required [Kim09]. 

SecureQEMU is implemented in an emulated Windows/Intel desktop system 

making use of the no-execute bit in the memory paging system.  The no-execute bits are 

originally set to zero, and the exception handler is hooked so that a no-execute exception 

computes a hash of the page and compares it to the whitelist.  If a match is found, the bit 

is set and the page is allowed to execute.   

2.4 Summary 

This chapter reviews the vulnerabilities of and threats to smartphones, as well as a 

number of protection mechanisms that are either already in use or are proposed for 

protecting them.  It examines the various protection mechanisms’ efficacy and the costs 

they incur.  The following chapter provides a methodology for implementing a 

mechanism similar to SecureQEMU’s signed code method in a mobile device. 
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III. Code White 

3.1 Introduction 

This chapter presents Code White (Code Whitelist and Hardware Implemented 

Trusted Execution,) a signed code adaptation of the Symbian OS running on an ARM 

processor.  It enforces a code whitelist by means of the execution bit available in many 

newer mobile processors.  It operates in kernel mode and effectively protects the system 

from malicious user-mode code. 

Running signed code provides two benefits over unsigned code.  First, it verifies 

the author or sender of the code, and it ensures that the code has not changed since it was 

installed on the device.  These two benefits are known as non-reputability and integrity in 

the CIA security model.  

This chapter first describes the salient features of the ARM architecture and 

Symbian Operating System that make them suitable for this research.  A full discussion 

of the design and implementation of Code White follows.  Much of Section 3.3 is adapted 

from [Sal06].      

3.2 The ARM Architecture 

The ARM Architecture (ACORN RISC Machine or Advanced RISC Machine) is 

a reduced instruction set computer (RISC) architecture that first saw production in 1983.  

Originally designed for desktop computing, ARM has evolved to be the embedded 
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architecture of choice in many areas, especially in mobile phones.  Nearly 98% of mobile 

phones worldwide contain at least one ARM processor [Kra06].   

Being a RISC architecture, simplicity is ARMs hallmark.  This promotes ease of 

implementation and lowers power consumption which is extremely desirable in the 

embedded world.  Additional RISC features include: load/store processing, numerous 

uniform access registers, and a fixed-length instruction.  ARM supports seven processor 

modes: one user mode and six privileged modes.  The Supervisor privileged mode is 

reserved for protected operating system processing [Kna04]. 

The ARM architecture is actually a family of architectures that spans 26 versions 

in 14 families.  Each version/family extends the capabilities of previous implementations.  

Version six (ARMv6) in the ARM11 family has notable changes over ARMv5, including 

the addition of the execute-never (XN) bit to the page table permissions.  The OS can set 

this bit in the page table entries for pages that do not contain executable code.  Any 

attempt to fetch an instruction from such a page results in a permission fault [ARM05].  

Many smartphones today use Cortex-A8 based processors from the ARMv7 architecture 

which inherits the XN bit from ARMv6. 

3.3 The Symbian Operating System 

The Symbian Operating System was designed specifically for mobile computing.  

Its origin traces back to an 8-bit kernel developed in the 1980s for use in personal 

organizers and extends to the current 32-bit kernel, EKA2.  Throughout that progression, 

Symbian remains an embedded OS, similar to other real time OSes, but also now includes 

functionality that was once only found in larger desktop systems.  This makes it an ideal 
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platform for smartphones since its real time capabilities support the signaling protocols 

for voice and data transmission while additional functionality marshals processes and 

applications in a secure manner. 

Symbian’s kernel, EKA2, is modular, a feature that permeates the rest of the OS 

as well.  This modularity keeps Symbian’s many functional areas streamlined and simple.  

Built for a single user (most mobile devices are not designed for multiple users), it has a 

preemptive multi-tasking kernel, allowing multiple applications to run, while ensuring 

that each application releases the CPU as required.  It is also priority based, quickly 

allocating resources from lower priority threads for use by higher priority threads. 

To keep the kernel as small as possible, a number of services often found within 

the kernel are implemented using user mode servers, including all file and windowing 

services.  A partial overview of Symbian is shown in Figure 4 (adapted from [Sal06]).  

 

Figure 4 - An Overview of the Symbian Operating System 
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3.3.1 Memory Management 

Symbian OS supports many kinds of devices and their associated hardware 

architectures.  Its memory management component supports five different models.  

Understanding these models is important. 

The Memory Management Unit (MMU) translates between physical and virtual 

addresses.  The MMU (or lack thereof) is the leading characteristic that defines the 

memory model used.  A list of memory models is shown in Table 4. 

Before discussing the models themselves, it is important to define chunks and 

paging.  A “chunk” is the primary unit of allocation, mapping physical RAM and other 

devices to contiguous virtual addresses.  A chunk includes a reserved region (the set of 

virtual addresses available to the process) and a committed region (the physical mapped 

region of RAM).  The kernel allocates chunks and may alter their size dynamically.  Each 

process is allocated at least two chunks: one to hold the executable’s .data section 

(initialized gobal and writable static data), .bss section (zero filled data) and user-side 

stack space, the other to hold the main thread heap.  If the executable is not loaded from 

ROM, the MMU allocates a third chunk for the code. 

All memory models except the direct model use paged memory where processes 

are allocated linear, virtual memory addresses that translate to physical addresses on the 

RAM chip itself.  Demand paging (i.e., swapping pages between memory and other 

storage for performance reasons) is not currently supported. 
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Table 4 - Symbian Memory Models and Their Characteristics 

No MMU Direct Memory Model 

Virtually tagged cache Moving Memory Model 

Physically tagged cache Multiple Memory Model 

Emulator Emulator Memory Model 

Supports Symmetric Multi-Processor Flexible Memory Model 

3.3.1.1 The Moving Memory Model 

The moving memory model was the most common model until the advent of the 

ARMv6 architecture.  It is based on the use of a single page table directory for the entire 

OS and all processes.  Processes share the virtual address space, and are accessed by 

moving memory chunks during context switches (i.e., changing their virtual addresses). 

For security, the moving model makes use of page table permissions and domains.  

Page table permissions record the allowed access from user and supervisor modes 

(read/write/execute).  Domains (up to 16 in ARMv5) provide a fast way to modify 

memory page rights.  Each page is assigned to exactly one domain.  The domain dictates 

whether that page is not accessible, accessible to all (ignoring table permissions), or 

accessible according to page permissions.   

Context switches in the moving model are slow and complex.  The MMU changes 

the page directory entry for the outgoing and incoming processes, along with the 

necessary domain entries and permission bits.  The translation look-aside buffer (TLB) 

and cache are cleared to prevent false hits (as the old and new process were mapped to 
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the same virtual addresses).  The moving model uses an indexed and tagged virtual 

addresses cache.   

3.3.1.2 The Multiple Memory Model 

The multiple memory model makes improvements in performance and security. 

First, it uses two page directories as opposed to one in the moving model.  One is global, 

and another is specific to the local process.  For security it adds the no-execute bit to page 

table entries while maintaining the permissions and domains concepts from the moving 

model (though the use of domains has been deprecated).  This ensures that data pages are 

never read during instruction fetching, no matter what the other permissions are.  

Processes receive an application space identifier (ASID) which is prepended to virtual 

addresses belonging to the process in structures like the TLB, thereby eliminating the 

need for flushing buffers during context switches.  Finally, the cache is virtually indexed 

and physically tagged, which means that the cache does not require flushing between 

context switches either as memory references will always resolve to a single process. 

The multiple model’s name is due to keeping multiple processes mapped to 

memory simultaneously.  Context switches are much quicker than the moving model 

since they involve a change to only two registers: the register that holds the page 

directory and the context id register. 

3.3.1.3 The Direct Memory Model 

This model disables the MMU so the OS is limited to direct mapping between 

virtual and physical addresses.  Without an MMU, the memory must be divided among 

processes at build time since chunks cannot change at run time.  Furthermore, there is no 
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protection between kernel space and user space.  For these reasons, Symbian does not 

support this mode for production devices.  It is useful for porting software: a 

manufacturer may disable the MMU to simplify the debugging of other functions.  Once 

they are stable, the MMU is re-enabled and a different memory model is used. 

3.3.1.4 The Emulator Memory Model 

The Emulator Model is based on a PC running Windows.  This model does not 

interact directly with hardware to allocate memory, but interacts with the host OS via the 

host’s APIs.  It is only used to operate the WINS emulator for Symbian, not the QEMU 

emulator.  The latter emulates actual ARM hardware on which any of the other 

compatible memory models may be used. 

3.3.1.5 The Flexible Memory Model 

The Flexible Memory Model is the newest model, supporting the ARMv7 and  

later families.  It builds upon the Multiple Model, but adds support for the Symbian 

Symmetric Multiprocessor (SMP) kernel for multicore CPUs beginning with the ARM 

Cortex A9.  At the time of this writing, documentation on this mode is limited, but 

departures from the Multiple Model include: 1) arrays of physical page addresses which 

represent storage for chunks, code, and thread stacks that replace chunks as the basic 

allocation entity called “memory objects”.  2) Permissions and sharing properties apply to 

“memory mappings” rather than the chunk.  One or more memory mappings may apply 

to one or more memory objects.  3) Processes sharing the same chunk may use different 

virtual addresses for access. 
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3.3.2 Security 

Symbian security is built around the following three elements: the OS process is 

the unit of trust, capabilities control access to sensitive resources, and data caging 

protects files against unauthorized access. 

3.3.2.1 Processes and Trust 

There are three levels of trust within Symbian.  The most trusted level is the 

Trusted Computing Base (TCB) which consists of the kernel, the file server, and the 

installer.  This level is the source of all trust for the rest of the OS.  It has unrestricted 

access to resources and has the most protection applied.  Next is the Trusted Computing 

Environment (TCE).  These modules need access to some but not all critical resources 

and are responsible for protecting those resources.  Finally, the application layer is for 

processes that are not trusted to access resources directly, but which must request service 

via the other two levels.   

Additional process protections extend beyond the basic levels of privilege above.  

First, privileged threads/processes like the kernel that need to access unprivileged user 

mode memory do so via special methods that ensure the stability of the process if invalid 

memory is accessed.  Next, all thread memory spaces are considered private; they cannot 

be accessed by other processes.  Additionally, new thread stacks and heaps are zeroed in 

memory to eliminate the chance of data leaking from an old process to a new one.  The 

never-execute bit prevents execution of memory contents in stacks, heaps, and static data 

to prevent malicious code execution.  
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3.3.2.2 The Capability Model 

Capabilities in Symbian are authorization tokens.  They protect data resources by 

ensuring only those processes that have been approved to access them can do so.  The 

first rule of this model is that a process’ list of capabilities never changes during its 

lifetime.  Capabilities are specified at compile time and cannot be modified thereafter.  

Second, no process can load a library with fewer capabilities than itself since a call to the 

loading library would then execute its code with the process’ greater privilege.  

3.3.2.3 Data Caging 

Symbian’s file access control system is based on directory paths.  Under any 

drive, there are four directories under the root that denote differing access levels.  Files in 

the \sys directory are only accessible by the TCB.  These are files critical to the system: 

executables for example.  Second, files in the \resource directory are readable by all 

processes, but only writeable by the TCB.  These are fairly static files like images and 

help files.  Next is the \private directory which has subdirectories for every process.  Only 

that process and the TCB can access this directory.  Any other directory under the root is 

considered public and has no restrictions. 

3.3.3 Enhancing Symbian 

Symbian OS is the platform used to implement Code White.  It is open source, 

represents a large portion of the smartphone community, and supports the ARM 

processor and its associated execution bit. 

Symbian already has a signing protection, so why enhance it?  As discussed in 

Chapter 2, the signing process has been manipulated by malicious coders.  Furthermore, 
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Symbian Signed certificates only provide non-repudiation.  Code White adds the XN bit 

to prevent untrusted code from executing and moves this from user to kernel mode 

enhancing its integrity. 

3.4 Design 

Chapter 2 explains the need and difficulty of achieving trusted execution in 

mobile devices.  Mobile device manufacturers and network operators use a variety of 

methods to achieve such trust, even while running third party code.  Even so, application 

signing has been subverted as malicious code writers also have certificates.  Code White 

provides an alternative signed code execution method.  It extends the Symbian OS loader 

to include an additional assurance that only trusted code may execute on the device by 

combining two protection mechanisms: a whitelist for executable code and execution 

permission bits in the page tables. 

3.4.1 Signed Code Execution 

The first Code White mechanism is a whitelist for executable code.  Chapter 2 

discusses many types of malware for mobile devices.  Though diverse, they share one 

trait in common, they need to execute code on target devices.  Using a signed code 

mechanism places code into two groups, trusted and untrusted.  This is different than a 

blacklist.  A blacklist explicitly identifies known malicious code and allows all of the rest 

to execute.  This is a ‘fail open’ system as the default case allows the unknown code 

access to the system, and fails to adhere to the design principle of fail-safe defaults 

[Sal75].  A whitelist identifies trusted code disallowing all others, resulting in a ‘fail 



   

29 
 

closed’ system.  In this case, whether unknown code is malicious or not is unimportant, it 

cannot execute unless it is known and trustworthy. 

3.4.1.1 Cryptographic Support 

An important issue in a whitelist system is how to identify trusted code.  The 

system could store copies of all allowable code and compare an arriving executable, but 

this is highly inefficient, even pointless since having copies of trusted code on the device 

would eliminate the need to bring them on the device in the first place.  It is necessary to 

protect code with a smaller object that is unique, and cannot be easily counterfeited.   

Code White uses a hash-based message authentication code (HMAC) to uniquely 

identify trusted code.  Computing a cryptographic hash is a one-way function that takes 

data of arbitrary length and produces a ‘digest’ of that data.  An HMAC is a 

cryptographic hash of both the message and a secret key.  The reasons for using an 

HMAC are twofold.  First, using a hash digest makes it infeasible for an attacker to pass 

malicious code into the system since a hash function is a one-way function.  It is easy to 

compute a hash from a message, but impossible to compute a message from a hash.  An 

attacker that knows the trusted digests is still unable to construct malicious code that 

results in the same digest as one on the list.  Second, by using the HMAC, each hash list 

is unique to its user since the HMAC of each message/key pair is different than that of 

other users.  Thus, even if an attacker were able to produce a malicious file that had a 

trusted HMAC, it would only be for one user.  Trying to produce such a file only for one 

user is very inefficient. 
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3.4.1.2 Kernel Layer Implementation Protects User Layer 

Code White protects a smartphone from untrusted user applications, including 

.exe files and statically linked libraries (.dll).  Since it protects at the user level, it is 

necessary that the mechanism itself execute from the kernel level so that user code cannot 

affect or interfere with its performance.   

Modifications to the Symbian OS that make up Code White are all within the 

kernel and the file server which are both part of the Trusted Computing Base.  It is 

essential to have this mechanism which raises trust execute from the most trusted parts of 

the OS. 

3.4.1.3 Trusting the List 

The list of trusted HMACs is intended to be open.  However, the HMAC of the 

list itself is computed at compile time for the kernel and included in the kernel binary file 

so the list can be validated before use.  An attacker could modify the list, but then the list 

HMAC computed at run time would not match the original and the protection mechanism 

defaults to the closed state. 

3.4.2 Hardware Assisted Execution Prevention 

Computing a cryptographic digest and checking it against a whitelist provides the 

system with the necessary information to determine trustworthiness, but does nothing to 

enforce the decision made.  Code White loads all code into memory but modifies the 

permissions of the code’s page tables such that only trusted code has the bit set that 

allows execution.  Untrusted code loaded into memory has the no execute bit set for its 

page tables.  When the instructions are fetched from an untrusted page, a prefetch abort is 
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raised and the appropriate actions can be taken to notify the user, isolate, monitor or 

report on the code in question. 

3.5 Implementation 

3.5.1 The Symbian Loading Process 

In a standard Symbian loading process the loader operates like a server, and has 

portions that execute in user mode and others in kernel mode.  The loading process 

begins when invoked by user mode functions to run executable files.  An executable can 

be an executable application (.exe), library (.dll), driver (.ldd or .pdd), file system/system 

extension/system plugin or locale (all except .exe are types of dlls).  The term 

‘executable’ means any one of these file types and application denotes an .exe file only.   

A TRomImage is an executable that resides in the device ROM.  All symbols, 

relocation data and import data are discarded and the import stubs are replaced with the 

actual exported function addresses in ROM.  They are not compressed.  This enables the 

TRomImage to execute in-place (designated as XIP).  When executing a TRomImage, the 

kernel allocates data and heap chunks to their processes, but the code itself executes 

directly from the ROM.  E32Images cannot reside in ROM.  If an E32Image is sent to the 

ROM building process, it is converted to a TRomImage.  These two file types have 

different headers, the TRomImageHeader and E32ImageHeader. 

The application loading process has six main phases, each stemming from a main 

function found in E32Image::LoadProcess.  These are: 
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- RImageFinder::Search 
- E32Image::Construct 
- E32Loader::ProcessCreate 
- E32Image::LoadToRam 
- E32Image::ProcessImports 
- E32Loader::ProcessLoaded 

(E32Loader functions are kernel executive functions, while the others all execute 

in user mode.) 

The following paragraphs describe the loading process for a non-execute-in-place 

application.  RImageFinder::Search begins by finding the requested file for execution.  If 

a complete path is not specified, it searches for any sys/bin (the required location for 

executable files per Symbian platform security) at each drive letter starting with Y and 

moving back to A, and lastly Z which is the drive letter for the device ROM image.  

Understanding this search is important since multiple executables may be on the device.  

The search function runs the first one that matches the requested filename.  Thus an 

E32Image test.exe found on the S: drive would execute rather than one that was included 

in ROM unless the user requests the full path to it: Z:\sys\bin\test.exe. 

The search function performs a number of activities upon finding the intended 

file.  It collects basic information about the file and performs some sanity checking for 

platform security reasons.  Included in the code is a sub-function to compute a hash of the 

file, but according to a comment in the source, the function is bypassed for performance 

reasons. 

E32Image::Construct reads the entire E32ImageHeader and populates member 

variables with the header information.  E32Image extends the TProcessCreateInfo which 
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extends TCodeSegCreateInfo.  The latter two are used extensively throughout the rest of 

the loading process. 

E32Loader::ProcessCreate creates the new process object.  It allocates a memory 

address, maps RAM for the code and then creates the data/bss/stack chunk.  It adds the 

process to the kernel’s process list and creates the main thread. 

E32Image::LoadToRam then reads the code and data sections into their respective 

memory locations.  The code is loaded into the loader’s address space while the data is 

loaded into the new process’ space.  If the file is compressed by the deflate or byte pair 

algorithms, it is decompressed here.  Once the code is loaded, LoadToRam calls a 

number of sub-functions to relocate the code.   

E32Image::ProcessImports searches the file’s import directory and loads each dll 

found there.  RImageFinder::Search, E32Image::Construct, E32Image::LoadToRam, and 

E32Image::ProcessImports are invoked again for each dll, just as for an .exe.  The 

difference is that the E32Loader functions ProcessCreate and ProcessLoaded are replaced 

by calls by subfunction calls CodeSegCreate and CodeSegLoaded.  This occurs 

recursively for each .dll.  Any imports that they include are loaded and checked for 

additional imports. 

Finally, the E32Loader::ProcessLoaded function creates a new code chunk in the 

the new process’ address space and remaps the code from the loader’s address space.  

The loader sets the main thread state to ‘ready’ and returns. 
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3.5.2 Reading the Code Section 

Figure 5 illustrates Code White’s execution and shows where each part is located 

in the Symbian loading process.  The three basic sections of Code White are reading the 

code, computing the HMAC, and setting the XN bit as necessary. 

Access to the loading code section is the first objective of the signed code 

protection mechanism.  Code White interacts with the Symbian loading process during 

the E32Image::LoadToRam stage within the E32Image::Read function as shown in 

Figure 5.  The code and data sections are read into the memory allocated at their specified 

load addresses.  The modified function allocates a buffer on the loader’s user heap and 

reads a second copy of the code into the buffer.   

The next step is reading the hmacs.txt file in s:\sys\bin.  The full file path is 

specified to eliminate the need to search for it.  The loader opens this file, checks its size, 

allocates a sufficient buffer on the user heap, and reads in the file contents.   

A TCodeInfo object is created with a class unique to Code White.  Four member 

variables are initialized, one for each buffer’s size and one for each address.  The 

function then calls E32Loader::CodeCheck, a kernel executive function created solely for 

Code White. 

3.5.3 Computing the HMAC 

The CodeCheck executive moves execution to kernel mode, in keeping with the 

desired kernel layer protection characteristic of Code White.  As all other loader 

executive calls, CodeCheck performs a security check to validate it was called by the 
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loader thread.  Any other system entity fails this check, at which point the server is 

panicked and the kernel ends the loading process.   

 

Figure 5 - Code White Modifications to the Symbian Loading Process 

After some argument marshalling, the loader creates two buffers on the kernel 

heap, one for the HMACs file and one for the loading code section.  It copies information 

from the user heap to the kernel heap using the kumemget function which allows the 

kernel to access user memory. 

The function computes the HMACs of each of the new buffers using the MD5 

algorithm.  The key used is a hard coded 32 byte string 

“123456789012345678901234567890AB” but in an actual system, the key is unique to 

the user, for instance a PKI private key.  The hashing function returns a 20 byte HMAC 

for each buffer.   It compares the HMACs file HMAC to determine if it is an exact match, 
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and searches the HMACs file buffer to see if the code section HMAC exists within the 

buffer.  The HMACs file is not sorted and there is no special algorithm for searching for a 

match, but this could optimize performance.  There is no particular encoding for the 

HMACs file.  It holds only the HMACs in their binary forms, separated by 16 bits of ‘0’s.   

The results of the HMAC comparisons are recorded in a global variable: 

iAllowExecution.  Another global variable iAlreadySet ensures that loading dependencies 

of varying trust levels in a particular order will not compromise protection effectiveness.  

All required dlls are loaded during the main executable’s loading process, which means 

both of these integer ‘flags’ are needed to correctly ensure that all code used by the new 

process is trusted.  Both flags are cleared to 0 during the E32Loader::LoadProcess stage 

following the creation of the process object and declaration of a process ID.  This 

initialization takes place before the main executable’s code is loaded into memory.  All 

dll code is read into memory after the main executable before CodeCheck is ever called.  

Since the system allows at most one instance of the loader which can only load one 

process at a time, there are never conflicts when accessing these global flags. 

Table 5 shows the truth table for the decision process in the CodeCheck function.  

The AlreadySet flag is set during the code check for the new process’ main executable, 

and is never cleared.  The AllowExecution flag can only transition from 1 to 0 if the 

AlreadySet flag is 0 (i.e., this is the first executable to load for this process) and both the 

HMACs file and the loading image code are trusted.  If it is ever cleared in the 

CodeCheck function, subsequent calls to this function will not set it again.  Once these 

variables are properly set, the CodeCheck function returns.  
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Table 5 - Truth Table for iAllowExecution and iAlreadySet 

 

3.5.4 Setting the XN Bit 

The final part of Code White comes in the ProcessLoaded() stage of the loading 

process.  Here, as the loader creates the new process’ code chunk, it sets the appropriate 

page table permissions before mapping the code.  This is done in the 

DProcess::MapUserRamCode function.  This function does a number of tasks to ensure it 

has the correct permissions for the chunk type.  The modified function checks the global 

AllowExecution flag.  If it is set to 1, it does nothing else.  If the flag is 0, it replaces the 

chosen permissions with 0xA1F.  Bit 0, the XN bit is shown in Figure 6.  (Note the 

Multiple Memory model uses small pages by default.) 

 

Figure 6 - Symbian Page Table Entry Format 

AllowExecution AlreadySet
!IllegalHmacList &

HmacIsAMatch
AllowExecution' AlreadySet'

1 1 1 1 1
1 1 0 0 1
1 0 1 1 1
1 0 0 0 1
0 1 1 0 1
0 1 0 0 1
0 0 1 1 1
0 0 0 0 1
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The permissions 0xA1F indicate the chunk is neither shared nor global, and that 

the supervisor may read the chunk while user has no access.  The untrusted code is 

secured, unavailable for instruction fetching, but is available for analysis if desired. 

3.5.5 Limitations 

The Code White implementation includes a number of limitations, either by 

design to manage the scope of the effort, or as a result of difficulties encountered in its 

creation.  Code White protects a smartphone against untrusted user applications (.exe) 

and any associated, untrusted, statically linked libraries (.dll).  It does not protect against 

the various other types of executable files that run on the Symbian/ARM system 

including drivers and locales.  It does not protect against untrusted or malicious files that 

execute from the ROM.  It is assumed these files are verified and trusted.  Furthermore, if 

these files are compromised, then there is not a basis for trusting Code White itself.  An 

attacker that can access the files before ROM creation is assumed to have a persistant 

presence on the device; no protection mechanism can successfully provide trust for such 

a device. 

The next limitation is the requirement to create two extra copies of the code 

section.  Ideally, the executive function E32Loader::CodeCheck should be able to read 

any user memory space, including the allocated space for the loading process’ code.  But 

in practice, this was not achieved, even using the Symbian built Kern::AccessCode() 

function which places a mutex on the code segment to allow access.  Reading a copy to 

the user heap and later copying it to the kernel heap is a workaround, and affects Code 

White’s performance.  Even if this were not an issue, the call to check the code would 
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remain in the E32Image::Read function since at that point the newly read code section 

has not been relocated.  Performing the code check after relocation is not feasible since 

modified pointers throughout the code would change its HMAC resulting in a miss while 

searching the hmacs.txt file.  

To simplify Code White’s design, support was removed for compressed images.  

Standard Symbian supports three types of file compression: the Huffman Deflate 

algorithm, the bytepair compression algorithm and no compression.  A small 

modification to the E32Image::Construct function checks the compression type and 

returns KErrNotSupported if the file is compressed.  Adding support for compressed files 

would be simple if the ability to access user code from the CodeCheck executive function 

is added.  The call to CodeCheck would only need to be invoked between the time the 

code section is uncompressed and the time that it is relocated. 

Another improvement would be to load the HMACs file only once.  Currently it is 

loaded each time a code section loads to RAM.  Allocating a persistent area in the 

kernel’s memory would provide a modest performance gain.   

3.6 Conclusion 

With a brief introduction to both the Symbian Operating System and the ARM 

Architecture, this chapter presents Code White, a signed code mechanism to promote 

trusted execution of third party applications.  It should have minimal impact on device 

performance.  Since reading extra copies of the code and computing their respective 

HMACs while loading requires additional time, it will take longer to load than a standard 

build of the same OS, most likely adding an overhead of 50%-200%.  However any 
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decrease in performance is expected to be suffered only at load time, and will not affect 

the steady state operation of the trusted applications.   
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IV. Code White Performance 

4.1 Approach 

To measurably achieve the goal of improving smartphone security, it is necessary 

to execute Code White and evaluate its ability to prevent the execution of untrusted code 

while minimizing processing overhead.  The methodology to determine this consists of 

two rounds of testing: one to evaluate the protection mechanism, the other to detect any 

change in performance compared to an unmodified system.  Each system attempts to 

execute approved and unapproved code to verify expected operation.  A small group of 

applications serve as the trusted set for Code White’s HMAC table while several others 

are the untrusted input. 

To illustrate successful protection it is expected that Code White will allow all 

trusted applications (.exe) and their statically loaded libraries (.dll) to load and execute, as 

long as both the HMACs of the application and all libraries are in the Code White 

hmacs.txt file.  Further, Code White will not execute any combination of  .exe/.dll files 

that includes an untrusted file. 

It is expected that Code White will add significant overhead to the loading 

process compared to an unmodified system and that this overhead will grow linearly as 

the number of libraries and the code size increases. 
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4.2 System Under Test 

 The system under test (SUT) is the smartphone application protection system, 

shown in Figure 7.  Though the system interacts with other entities, (user, network, etc.) 

the system is limited to the handheld device itself.   

 

Figure 7 - Smartphone Application Protection System 

The system includes four components.  The loader loads executable files and 

performs other functions to ensure system security during and after the loading process.  

Code White’s implementation within the loader makes it the component under test.  The 

user interface provides some security by validating user input.  The memory management 

system applies security policies to protect code and data in main memory.  Finally, the 

file system includes many protections for offline files in the device.  These components 

provide two services, system and data security.  Table 6 shows various outcomes that 

result from these services. 
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Table 6 - Protection System Services and Outcomes 

Service Outcome 

System Security 

Untrusted code: Executed, Blocked 
System settings: Correct, Incorrect 
Malformed input: Allowed, Blocked 
 

Data Security Data protected, Data compromised (unauthorized access) 

To measure Code White’s successful operation and performance requires two 

metrics.  First, the handling of trusted/untrusted files yields a Boolean result - either the 

subject application executes or it does not.  Second, the response time for each loading 

application serves as the performance indicator.  Both the standard Symbian platform and 

the modified version contain a timer to provide this metric. 

4.3 System Parameters, Factors & Workload 

The SUT includes four fixed parameters for the testing procedure: hardware, the 

OS base version, the security key, and the application whitelist.  The hardware is virtual, 

emulated by the Symbian-modified Quick Emulator (QEMU) known as the ‘Syborg 

Virtual Platform’ (hereafter ‘syborg’).  Syborg emulates an ARM Cortex-A8 processor 

and 128 MB of RAM.  The Cortex-A8 supports the multiple memory model and thus the 

XN bit required for Code White.  Though Code White’s design is centered around the 

hardware XN bit, it is a software modification.  The hardware configuration is the same 

for all tests. 

The base OS version in both the standard and modified images is Symbian 3.0.h.  

Keeping the same base ensures that only the Code White modification affects the 

performance metrics. 
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The secure key used to calculate the HMACs in Code White could affect 

performance if its length is varied between tests.  The key for all tests is 32 bytes: 

‘123456789012345678901234567890AB’.   

The length of the HMAC whitelist file is fixed since a longer file requires longer 

searches to find a valid HMAC or determine that the application is untrusted.  The 

whitelist for the tests contains only the HMACs of the fifteen trusted files (identified 

below). 

 Code checking is a system testing factor.  Either Code White is present or not.    

Meanwhile, the workload consists of the applications presented to the system along with 

their associated libraries.  The size of the application code, number of dlls, and trust level 

of the files are workload factors.   

The .exe file sizes range across four values: 1, 10, 50 and 100kB, represented by 

s, m, l and x respectively in the first character of the file name.  Each has a number of 

dependencies (dlls) from none to two as shown in Table 7, columns labeled 0, 1 and 2.   

Table 7 - Workload Executables 

Size/Dlls 0 1 2 
1kB s0.exe s1.exe s11.exe 

10kB m0.exe m1.exe m11.exe 
50kB l0.exe l1.exe l11.exe 

100kB x0.exe x1.exe x11.exe 

The workload also includes three libraries: d1.dll, d2.dll and d3.dll.  All three are 

~1kB in size.  The three applications named _11.exe explicitly include d1.dll and 

implicitly include d2.dll.  In other words, d1 has a dependency on d2.  The three _1.exe 

files include only d3.   
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The untrusted executable files are duplicates of the trusted versions that have a 

few bytes changed in their text sections.  All of the executables print a few messages to 

the console, so the simplest change to make is to change the message.  For instance, 

“press any key” is changed to “break any key”.  This keeps the file and section sizes the 

same, and does not require any change to the file headers.  Both .exe and .dll files have 

trusted and untrusted versions.  Since untrusted files never execute, they are not used for 

performance testing, but only to validate the protection mechanism. 

Table 8 shows the four experimental factors and their levels used in both test 

groups.  Code checking is fixed ‘on’ for testing protection since all files are expected to 

execute on standard Symbian, which was verified before running the protection tests.  

File trust level is ‘trusted’ for all files used in the performance test as the loading 

performance of an untrusted application that will fail to execute is not important to the 

user experience.  In all cases of failed execution caused by Code White blocking an 

untrusted file, an error message was returned to the user who could subsequently type 

another command into the console.  This is acceptable for the case of a blocked file. 

Table 8 - Experimental Factor Levels 

Factor Levels Protection Testing Performance Testing 
Code Checking On/Off Fixed (On) Varied 
File Size (kB) 1, 10, 50, 100 Varied Varied 
Number of dlls 0, 1, 2 Varied Varied 
File Trust Level Trusted, Untrusted Varied Fixed (Trusted) 

With these levels, protection testing includes 56 experiments, the result of 

multiplying 4 file sizes by the sum of 2 raised to the total number of files required for 

each application, since all combinations of trusted/untrusted files are tested for execution 
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success.  Thus 8 tests for all combinations with no dlls, 16 for all combinations with 1 dll 

and 32 for all combinations with 2 dlls yields the 56 tests. 

Performance testing requires 72 tests, due to varying the 2 code checking levels, 4 

file sizes and 3 dll levels.  All tests are repeated 3 times. 

4.4 Evaluation Technique and Experimental Design 

To measure the response time, both the modified and standard systems include 

two TTime objects in the RProcess::Create function.  RProcess::Create invokes the loader 

itself which contains Code White.  When it returns, the newly loaded application 

executes.  Thus, this function captures the start and stop objects for calculating the 

application response time.  The addition of the TTime object with its start and stop 

instructions is the only modification to the standard Symbian platform. 

To calculate the response time, a start object and stop object each set themselves 

to the system time.  The objects themselves support a resolution of microseconds.  

However, the Syborg platform only offers a usable precision of 1 millisecond.  Because 

of such a low resolution, and since the emulator does not emulate any of a smartphone’s 

communications functions (network overhead, voice calls, SMS, etc), the expected 

variance is extremely small. 

The host machine running Syborg is an Intel Xeon 5160 quad core desktop (3.0 

GHz) with 3.25GB RAM.  The host OS is Windows XP SP3. 
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4.5 Protection Testing 

Table 9 - Protection Experimental Results 

Test .exe .dll .dll Loads? Test .exe .dll .dll Loads? 
1 s0     yes 29 s11 d1 d2 no 
2 s0     no 30 s11 d1 d2 no 
3 m0     yes 31 s11 d1 d2 no 
4 m0     no 32 s11 d1 d2 no 
5 l0     yes 33 m11 d1 d2 yes 
6 l0     no 34 m11 d1 d2 no 
7 x0     yes 35 m11 d1 d2 no 
8 x0     no 36 m11 d1 d2 no 
9 s1 d3   yes 37 m11 d1 d2 no 

10 s1 d3   no 38 m11 d1 d2 no 
11 s1 d3   no 39 m11 d1 d2 no 
12 s1 d3   no 40 m11 d1 d2 no 
13 m1 d3   yes 41 l11 d1 d2 yes 
14 m1 d3   no 42 l11 d1 d2 no 
15 m1 d3   no 43 l11 d1 d2 no 
16 m1 d3   no 44 l11 d1 d2 no 
17 l1 d3   yes 45 l11 d1 d2 no 
18 l1 d3   no 46 l11 d1 d2 no 
19 l1 d3   no 47 l11 d1 d2 no 
20 l1 d3   no 48 l11 d1 d2 no 
21 x1 d3   yes 49 x11 d1 d2 yes 
22 x1 d3   no 50 x11 d1 d2 no 
23 x1 d3   no 51 x11 d1 d2 no 
24 x1 d3   no 52 x11 d1 d2 no 
25 s11 d1 d2 yes 53 x11 d1 d2 no 
26 s11 d1 d2 no 54 x11 d1 d2 no 
27 s11 d1 d2 no 55 x11 d1 d2 no 
28 s11 d1 d2 no 56 x11 d1 d2 no 

*Grey files are untrusted 

Table 9 shows the results of the 56 tests to validate the efficacy of the protection 

mechanism.  White cells represent trusted files, while untrusted files are shown in grey.  

For each run, the S:\sys\bin directory only contains the files for that test to ensure the 

correct combinations executed.  Only tests that include all white cells loaded and 
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executed which is the desired response.  Thus, Code White successfully allows trusted 

code to execute and prevents untrusted code. 

4.6 Performance Testing 

The results of the 72 performance tests are shown in Appendix A.  Figure 8 is a 

difference plot of the mean load times for an application with no .dlls loading on both 

Symbian and Code White. 

 

Figure 8 - Difference In Application Load Times 

As expected, the difference in mean load times is linear as both systems show a 

linear increase in load time in response to increasing file size.  Likewise, increasing the 

number of .dlls produces a similar response, linear according to the size of the .dlls being 

loaded as shown in Figure 9.   

100806040200

35

30

25

20

15

10

5

0

File Size (kB)

D
iff

er
en

ce
 o

f 
M

ea
n 

Lo
ad

 T
im

es
 (

m
se

c)

S 0.299817
R-Sq 100.0%
R-Sq(adj) 99.9%

Regression
95% CI

App Load Time Difference: Std Symbian vs Code White, 0 Dlls
Diff =  2.756 + 0.2814 Size



   

49 
 

 

Figure 9 - Application Load Time in Code White by Number of Dlls 

The regression model for Code White’s load time performance is 

       Load Time = 25.8 + 0.540 * Size + 13.5 * Dlls  (1) 

where ‘Size’ is the sum of the .exe and all associated .dll code section sizes and ‘Dlls’ is 

the number of .dll files included.  The sum of squares given by an analysis of variance 

test yields 20,443 as the regression sum of squares and 52 for that of the residual error. 

The  P value for the regression is less than .001 which gives convincing evidence that the 

the regression model fits the data well.   

Based on (1) an application with a 1MB code section and no dlls would load in 

566 milliseconds using Code White (95% prediction interval 555 to 577 msec) while one 

with two dlls would take 593 milliseconds (95% interval 582 to 604 msec).  Both times 

are less than the one second limit proposed as the most a user will maintain uninterrupted 
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thought [Nie94].  While it is not fast enough for the user to feel the machine is 

instantaneously responsive, it is practical enough for general use.  Knowing the load time 

of a one megabyte code section is important as many applications currently remain below 

this limit.  Meanwhile the 95% confidence interval for an unmodified Symbian image to 

load the same applications puts the 1MB load time between 243 and 354 milliseconds.  

Code White’s performance is therefore noticeably slower than the alternative (~133% 

slower for 1MB with no dlls,) but it is still acceptable for the user.   

4.7 Summary 

Compared to a standard Symbian image running on QEMU, Code White incurs a 

linearly increasing overhead based on the size of the executable code that is loaded.  For 

applications up to 1MB, the total load time is still within usable limits for the user.  

Chapter 5 proposes several ways to improve Code White’s performance as well as related 

work. 
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V. Conclusion 

5.1 Research Accomplishments 

This research explores the emerging area of smartphones, their uses and 

vulnerabilities, and the current and potential threats to them, mostly brought on by their 

capability to execute arbitrary third party code.  A signed code mechanism called Code 

White was developed and implemented in a Symbian OS kernel running on QEMU.  (A 

diff output in Appendix B identifies the modifications made to the original Symbian 

source code.)  Code White’s performance while loading executable files was compared to 

that of a standard Symbian system. 

Smartphones can communicate over many different protocols and mediums, thus 

offering many attack vectors for malicious actors.  However, rather than seeking to 

protect against these many diverse methods, Code White addresses and protects the 

common capability malicious code cannot succeed without: the ability to execute.   

Code White successfully prevents the execution of untrusted code while imposing 

an acceptable increase in load time of 43 milliseconds for a 100kB file with 2 dlls, and a 

predicted increase of 300 milliseconds for a 1MB file with 2 dlls (95% prediction 

interval).  A user may use a phone running Code White without experiencing any 

disruptions to their normal activities.  Furthermore, resource usage is kept to a minimum.  

A few extra milliseconds of loading are required of the CPU and batteries, which is much 

less than that required by using antivirus.  The ability to stop untrusted code meets the 

research goal of improving security for smartphones. 
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5.2 Research Significance 

Realizing that there is a balance between security and usability, Code White may 

not be a popular protection mechanism for the mass market of consumer smartphones.  

Many choose to buy these phones based upon the capability to crawl through any number 

of applications, trying and buying many of them.  Such a use case is the antithesis of 

Code White.  Certainly developers and vendors could provide HMACs of these 

applications, but two limitations stand out: providing large HMAC lists will affect 

performance, and worse, malicious coders have been able to receive valid signatures in 

the application signing process.  Creating a more robust signed code mechanism does 

nothing to fill holes in the trust granting procedure.   

However, there are many corporate and government areas that could benefit from 

Code White.  Many such organizations have policies that explicitly list what applications 

may run on company or government equipment.  These lists are generally short and 

relatively static.  Thus the HMAC lists would be short and infrequently used.  Corporate 

and government trust granting mechanisms are more capable and more highly motivated 

to use closer scrutiny, and the distribution processes can be more carefully guarded than 

that of the general consumer public. 

5.3 Future Research 

The Symbian Operating System was released as open source in early 2010.  

Learning the inner workings of an unknown OS - even one for mobile devices - takes 

time.  Perfecting any modifications to that OS take even longer.  There are a number of 
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improvements that can be made to Code White and there is additional research that can 

be done.   

Code White makes three copies of the loading application’s code to get it to the 

code checking executive function.  Fixing this need would greatly improve its 

performance, possibly putting its performance very close to that of the unmodified OS.  

This should be done with care to ensure the protection of the kernel while accessing user 

code directly. 

The hmacs.txt file used in testing only contained the fifteen HMACs that 

represented the fifteen trusted files tested.  The performance change resulting from the 

HMAC list size could be determined by testing with a larger list.  It is expected that any 

increase in load time due to a larger list (hundreds of HMACs) would be small compared 

to increasing the file size.  If that is not the case, and a larger list adds significant 

overhead to the load time, the list could be sorted, and Code White could be modified 

with a more efficient search algorithm to lower the search time. 

This research implemented Code White in an emulated environment (QEMU).  

One limitation of this was the timers that measured performance were also emulated and 

had a very low precision.  Implementation on a hardware device will result in more 

precise results.  Testing on an actual smartphone while it executes its many other 

capabilities including network interaction with voice and data connections running would 

be very valuable.   
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There are other types of executable files that are not currently checked by Code 

White, including drivers and locales.  Some of them are loaded directly into the kernel.  

While checking their HMAC is trivial, additional study is required to determine how best 

to isolate them if they are found to be untrusted.   

Code White could be used to detect and capture malicious code for mobile 

devices.  A number of smartphones or emulated phones could be scripted to browse 

mobile web sites, and devices could be placed in high traffic areas, with the purpose of 

being a ‘victim’ of malicious code.  For high traffic areas, devices could make themselves 

discoverable in as many modes as possible, to see if connection attempts are made and 

any files are pushed to them.  Using the phones could gather files with 

untrusted/unrecognized code sections as a type of early warning system for mobile 

malware. 

The Code White mechanism should also be tested on devices that are not typically 

thought of as smartphones.  For instance, devices like the General Dynamics GD300X 

wearable computer is essentially a smartphone developed for ground troops to wear 

[Cra10].  Such devices will certainly be targeted by adversaries. 

Mobile phones are already an enabler in our military.  Once frowned upon, they 

are now even issued to commanders - not just phones that make and take calls, but 

smartphones that can connect to other devices and run programs.  The same is true of 

business and civic leaders.  Current trends show more business at these levels being done 

using the computing power of these devices as opposed to the desktop computers in their 

offices.  Protecting these critical devices is as important as protecting other types of 
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computing systems.  While antivirus and similar protection methods are not up to the 

task, Code White has shown a secure system can be provided with acceptable limits of 

usability and resource usage. 
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Appendix A.  Performance Testing Data 

 
Code White 

  
 

Run1 Run2 Run3 Mean 
s0 25 25 25 25 
m0 31 32 31 31.33333 
l0 52 52 52 52 
x0 81 81 81 81 
s1 41 41 41 41 
m1 46 45 46 45.66667 
l1 65 65 65 65 
x1 94 94 94 94 
s11 54 55 54 54.33333 
m11 58 58 60 58.66667 
l11 78 77 77 77.33333 
x11 107 107 107 107 

 

 
Standard 

   
 

Run1 Run2 Run3 Mean 
s0 22 21 22 21.66667 
m0 27 25 26 26 
l0 36 35 35 35.33333 
x0 52 49 49 50 
s1 33 32 32 32.33333 
m1 34 34 34 34 
l1 43 44 43 43.33333 
x1 60 58 57 58.33333 
s11 38 39 39 38.66667 
m11 43 41 40 41.33333 
l11 50 51 50 50.33333 
x11 66 64 64 64.66667 
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Appendix B.  Code White and Symbian PDK 3.0.h Diff 

diff -r 2ee5df201f60 kernel/eka/euser/us_ksvr.cpp 
--- a/kernel/eka/euser/us_ksvr.cpp Mon Mar 08 11:58:34 2010 +0000 
+++ b/kernel/eka/euser/us_ksvr.cpp Thu Aug 26 11:46:14 2010 -0400 
@@ -4892,7 +4892,20 @@ 
  RLoader loader; 
  TInt r=loader.Connect(); 
  if (r==KErrNone) 
+  { 
+  TTime OrigTime;  
+  OrigTime.HomeTime();//Start time for loading process 
+  TTime timetwo; 
+  TInt64 us; 
+  TTimeIntervalMicroSeconds ttims; 
+   
  
 r=loader.LoadProcess(iHandle,aFileName,aCommand,aUidType,aType); 
+   
+  timetwo.HomeTime();//End time for loading process 
+  ttims=timetwo.MicroSecondsFrom(OrigTime); 
+  us=ttims.Int64(); 
+  RDebug::Printf("%S loaded in %d 
microseconds",&aFileName,us); 
+  } 
  loader.Close(); 
  return r; 
  } 
diff -r 2ee5df201f60 kernel/eka/include/e32ldr_private.h 
--- a/kernel/eka/include/e32ldr_private.h Mon Mar 08 11:58:34 2010 
+0000 
+++ b/kernel/eka/include/e32ldr_private.h Thu Aug 26 11:46:14 2010 -
0400 
@@ -308,6 +308,15 @@ 
  TInt64 iStartAddress; 
  TInt iDriveNumber; 
  }; 
+  
+class TCodeInfo  //Class exclusive to Code White 
+ { 
+public: 
+ TInt iSize; //size of code section 
+ TUint8* iCLA; //pointer to user heap buffer holding code section 
+ TInt iHLSize; //size of hmac whitelist 
+ TUint8* iHmacList; //pointer to user heap buffer holding hmac 
whitelist 
+ }; 
  
 // 
 // Loader magic executive functions 
@@ -333,7 +342,7 @@ 
  IMPORT_C static TAny* ThreadProcessCodeSeg(TInt aHandle); 
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  IMPORT_C static void ReadExportDir(TAny* aHandle, TUint32* 
aDest); 
  IMPORT_C static TInt LocaleExports(TAny* aHandle, 
TLibraryFunction* aExportsList); 
- 
+ IMPORT_C static TInt CodeCheck(TProcessCreateInfo& aInfo, 
TCodeInfo* aCodeInfo); 
 #ifdef __MARM__ 
  IMPORT_C static void GetV7StubAddresses(TLinAddr& aExe, TLinAddr& 
aDll); 
  static TInt V7ExeEntryStub(); 
diff -r 2ee5df201f60 kernel/eka/kernel/execs.txt 
--- a/kernel/eka/kernel/execs.txt Mon Mar 08 11:58:34 2010 +0000 
+++ b/kernel/eka/kernel/execs.txt Thu Aug 26 11:46:14 2010 -0400 
@@ -2437,6 +2437,16 @@ 
  arg1 = TDes8& 
 } 
  
+slow { 
+ name = CodeCheck 
+ user = E32Loader 
+ export 
+ return = TInt 
+ arg1 = TProcessCreateInfo& 
+ arg2 = TCodeInfo* 
+} 
+ 
+ 
  
 
/**********************************************************************
******** 
  * End of normal executive functions 
diff -r 2ee5df201f60 kernel/eka/kernel/scodeseg.cpp 
--- a/kernel/eka/kernel/scodeseg.cpp Mon Mar 08 11:58:34 2010 
+0000 
+++ b/kernel/eka/kernel/scodeseg.cpp Thu Aug 26 11:46:14 2010 -
0400 
@@ -19,6 +19,370 @@ 
 #include <e32uid.h> 
 #include "execs.h" 
  
+/* GLOBAL.H - RSAREF types and constants (added for Code White) 
+ */ 
+ 
+/* PROTOTYPES should be set to one if and only if the compiler 
supports 
+  function argument prototyping. 
+The following makes PROTOTYPES default to 0 if it has not already 
+  been defined with C compiler flags. 
+ */ 
+#ifndef PROTOTYPES 
+#define PROTOTYPES 0 
+#endif 
+ 
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+/* POINTER defines a generic pointer type */ 
+typedef unsigned char *POINTER; 
+ 
+//#if 1 
+/* UINT2 defines a two byte word */ 
+typedef unsigned short int UINT2; 
+ 
+/* UINT4 defines a four byte word */ 
+typedef unsigned long int UINT4; 
+ 
+typedef struct { 
+  UINT4 state[4];                                   /* state (ABCD) */ 
+  UINT4 count[2];        /* number of bits, modulo 2^64 (lsb first) */ 
+  unsigned char buffer[64];                         /* input buffer */ 
+} MD5_CTX; 
+ 
+void MD5Transform (UINT4 state[], unsigned char block[]); 
+void Encode(unsigned char *output, UINT4 *input, unsigned int len); 
+void MD5Init (MD5_CTX *context); 
+void MD5Final (unsigned char digest[], MD5_CTX *context); 
+void MD5Update (MD5_CTX *context, unsigned char *input, unsigned int 
inputLen); 
+void Decode (UINT4 *output,unsigned char *input,unsigned int len); 
+ 
+/* PROTO_LIST is defined depending on how PROTOTYPES is defined above. 
+If using PROTOTYPES, then PROTO_LIST returns the list, otherwise it 
+  returns an empty list. 
+ */ 
+#if PROTOTYPES 
+#define PROTO_LIST(list) list 
+#else 
+#define PROTO_LIST(list) () 
+#endif 
+ 
+/* MD5.H - header file for MD5C.C 
+ */ 
+ 
+/* Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All 
+rights reserved. 
+ 
+License to copy and use this software is granted provided that it 
+is identified as the "RSA Data Security, Inc. MD5 Message-Digest 
+Algorithm" in all material mentioning or referencing this software 
+or this function. 
+ 
+License is also granted to make and use derivative works provided 
+that such works are identified as "derived from the RSA Data 
+Security, Inc. MD5 Message-Digest Algorithm" in all material 
+mentioning or referencing the derived work. 
+ 
+RSA Data Security, Inc. makes no representations concerning either 
+the merchantability of this software or the suitability of this 
+software for any particular purpose. It is provided "as is" 
+without express or implied warranty of any kind. 
+These notices must be retained in any copies of any part of this 
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+documentation and/or software. 
+ */ 
+ 
+//static char rcsid[] = "$Id: md5c.c,v 1.2 1999/08/25 21:45:14 lennox 
Exp $"; 
+ 
+/* Constants for MD5Transform routine. 
+ */ 
+ 
+#define S11 7 
+#define S12 12 
+#define S13 17 
+#define S14 22 
+#define S21 5 
+#define S22 9 
+#define S23 14 
+#define S24 20 
+#define S31 4 
+#define S32 11 
+#define S33 16 
+#define S34 23 
+#define S41 6 
+#define S42 10 
+#define S43 15 
+#define S44 21 
+ 
+static unsigned char PADDING[64] = { 
+  0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
+  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
+  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 
+}; 
+ 
+/* F, G, H and I are basic MD5 functions. 
+ */ 
+#define F(x, y, z) (((x) & (y)) | ((~x) & (z))) 
+#define G(x, y, z) (((x) & (z)) | ((y) & (~z))) 
+#define H(x, y, z) ((x) ^ (y) ^ (z)) 
+#define I(x, y, z) ((y) ^ ((x) | (~z))) 
+ 
+/* ROTATE_LEFT rotates x left n bits. 
+ */ 
+#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n)))) 
+ 
+/* FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4. 
+Rotation is separate from addition to prevent recomputation. 
+ */ 
+#define FF(a, b, c, d, x, s, ac) { \ 
+ (a) += F ((b), (c), (d)) + (x) + (UINT4)(ac); \ 
+ (a) = ROTATE_LEFT ((a), (s)); \ 
+ (a) += (b); \ 
+  } 
+#define GG(a, b, c, d, x, s, ac) { \ 
+ (a) += G ((b), (c), (d)) + (x) + (UINT4)(ac); \ 
+ (a) = ROTATE_LEFT ((a), (s)); \ 
+ (a) += (b); \ 
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+  } 
+#define HH(a, b, c, d, x, s, ac) { \ 
+ (a) += H ((b), (c), (d)) + (x) + (UINT4)(ac); \ 
+ (a) = ROTATE_LEFT ((a), (s)); \ 
+ (a) += (b); \ 
+  } 
+#define II(a, b, c, d, x, s, ac) { \ 
+ (a) += I ((b), (c), (d)) + (x) + (UINT4)(ac); \ 
+ (a) = ROTATE_LEFT ((a), (s)); \ 
+ (a) += (b); \ 
+  } 
+ 
+/* MD5 initialization. Begins an MD5 operation, writing a new context. 
+ */ 
+void MD5Init (MD5_CTX *context) 
+                                        /* context */ 
+{ 
+  context->count[0] = context->count[1] = 0; 
+  /* Load magic initialization constants. 
+*/ 
+  context->state[0] = 0x67452301; 
+  context->state[1] = 0xefcdab89; 
+  context->state[2] = 0x98badcfe; 
+  context->state[3] = 0x10325476; 
+} 
+ 
+/* MD5 block update operation. Continues an MD5 message-digest 
+  operation, processing another message block, and updating the 
+  context. 
+ */ 
+void MD5Update (MD5_CTX *context, unsigned char *input, unsigned int 
inputLen) 
+{ 
+  unsigned int i, index, partLen; 
+ 
+  /* Compute number of bytes mod 64 */ 
+  index = (unsigned int)((context->count[0] >> 3) & 0x3F); 
+ 
+  /* Update number of bits */ 
+  if ((context->count[0] += ((UINT4)inputLen << 3)) < ((UINT4)inputLen 
<< 3)) 
+    context->count[1]++; 
+  context->count[1] += ((UINT4)inputLen >> 29); 
+ 
+  partLen = 64 - index; 
+ 
+  /* Transform as many times as possible.  */ 
+  if (inputLen >= partLen) { 
+    memcpy((TAny*)&context->buffer[index], (const TAny*)input, 
(TInt)partLen); 
+    MD5Transform (context->state, context->buffer); 
+ 
+    for (i = partLen; i + 63 < inputLen; i += 64) 
+      MD5Transform (context->state, &input[i]); 
+ 
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+    index = 0; 
+  } 
+  else 
+    i = 0; 
+ 
+  /* Buffer remaining input */ 
+  /* fixed by Akira Tsukamoto 04/04/2002 */ 
+  if (i >= inputLen) 
+    return; 
+  /* end fix */ 
+  memcpy 
+    ((POINTER)&context->buffer[index], (POINTER)&input[i], 
+    inputLen-i); 
+} 
+ 
+/* MD5 finalization. Ends an MD5 message-digest operation, writing the 
+  the message digest and zeroizing the context. 
+ */ 
+void MD5Final (unsigned char digest[], MD5_CTX *context)/* context */ 
+{ 
+  unsigned char bits[8]; 
+  unsigned int index, padLen; 
+ 
+  /* Save number of bits */ 
+  Encode (bits, context->count, 8); 
+ 
+  /* Pad out to 56 mod 64. */ 
+  index = (unsigned int)((context->count[0] >> 3) & 0x3f); 
+  padLen = (index < 56) ? (56 - index) : (120 - index); 
+  MD5Update (context, PADDING, padLen); 
+ 
+  /* Append length (before padding) */ 
+  MD5Update (context, bits, 8); 
+ 
+ 
+  /* Store state in digest */ 
+  Encode (digest, context->state, 16); 
+ 
+  /* Zeroize sensitive information. */ 
+  memset ((POINTER)context, 0, sizeof (*context)); 
+} /* MD5final */ 
+ 
+ 
+/* MD5 basic transformation. Transforms state based on block. 
+ */ 
+void MD5Transform (UINT4 state[], unsigned char block[]) 
+{ 
+  UINT4 a = state[0], b = state[1], c = state[2], d = state[3], x[16]; 
+ 
+  Decode (x, block, 64); 
+ 
+  /* Round 1 */ 
+  FF (a, b, c, d, x[ 0], S11, 0xd76aa478); /* 1 */ 
+  FF (d, a, b, c, x[ 1], S12, 0xe8c7b756); /* 2 */ 
+  FF (c, d, a, b, x[ 2], S13, 0x242070db); /* 3 */ 
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+  FF (b, c, d, a, x[ 3], S14, 0xc1bdceee); /* 4 */ 
+  FF (a, b, c, d, x[ 4], S11, 0xf57c0faf); /* 5 */ 
+  FF (d, a, b, c, x[ 5], S12, 0x4787c62a); /* 6 */ 
+  FF (c, d, a, b, x[ 6], S13, 0xa8304613); /* 7 */ 
+  FF (b, c, d, a, x[ 7], S14, 0xfd469501); /* 8 */ 
+  FF (a, b, c, d, x[ 8], S11, 0x698098d8); /* 9 */ 
+  FF (d, a, b, c, x[ 9], S12, 0x8b44f7af); /* 10 */ 
+  FF (c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */ 
+  FF (b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */ 
+  FF (a, b, c, d, x[12], S11, 0x6b901122); /* 13 */ 
+  FF (d, a, b, c, x[13], S12, 0xfd987193); /* 14 */ 
+  FF (c, d, a, b, x[14], S13, 0xa679438e); /* 15 */ 
+  FF (b, c, d, a, x[15], S14, 0x49b40821); /* 16 */ 
+ 
+  /* Round 2 */ 
+  GG (a, b, c, d, x[ 1], S21, 0xf61e2562); /* 17 */ 
+  GG (d, a, b, c, x[ 6], S22, 0xc040b340); /* 18 */ 
+  GG (c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */ 
+  GG (b, c, d, a, x[ 0], S24, 0xe9b6c7aa); /* 20 */ 
+  GG (a, b, c, d, x[ 5], S21, 0xd62f105d); /* 21 */ 
+  GG (d, a, b, c, x[10], S22,  0x2441453); /* 22 */ 
+  GG (c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */ 
+  GG (b, c, d, a, x[ 4], S24, 0xe7d3fbc8); /* 24 */ 
+  GG (a, b, c, d, x[ 9], S21, 0x21e1cde6); /* 25 */ 
+  GG (d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */ 
+  GG (c, d, a, b, x[ 3], S23, 0xf4d50d87); /* 27 */ 
+  GG (b, c, d, a, x[ 8], S24, 0x455a14ed); /* 28 */ 
+  GG (a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */ 
+  GG (d, a, b, c, x[ 2], S22, 0xfcefa3f8); /* 30 */ 
+  GG (c, d, a, b, x[ 7], S23, 0x676f02d9); /* 31 */ 
+  GG (b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */ 
+ 
+  /* Round 3 */ 
+  HH (a, b, c, d, x[ 5], S31, 0xfffa3942); /* 33 */ 
+  HH (d, a, b, c, x[ 8], S32, 0x8771f681); /* 34 */ 
+  HH (c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */ 
+  HH (b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */ 
+  HH (a, b, c, d, x[ 1], S31, 0xa4beea44); /* 37 */ 
+  HH (d, a, b, c, x[ 4], S32, 0x4bdecfa9); /* 38 */ 
+  HH (c, d, a, b, x[ 7], S33, 0xf6bb4b60); /* 39 */ 
+  HH (b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */ 
+  HH (a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */ 
+  HH (d, a, b, c, x[ 0], S32, 0xeaa127fa); /* 42 */ 
+  HH (c, d, a, b, x[ 3], S33, 0xd4ef3085); /* 43 */ 
+  HH (b, c, d, a, x[ 6], S34,  0x4881d05); /* 44 */ 
+  HH (a, b, c, d, x[ 9], S31, 0xd9d4d039); /* 45 */ 
+  HH (d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */ 
+  HH (c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */ 
+  HH (b, c, d, a, x[ 2], S34, 0xc4ac5665); /* 48 */ 
+ 
+  /* Round 4 */ 
+  II (a, b, c, d, x[ 0], S41, 0xf4292244); /* 49 */ 
+  II (d, a, b, c, x[ 7], S42, 0x432aff97); /* 50 */ 
+  II (c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */ 
+  II (b, c, d, a, x[ 5], S44, 0xfc93a039); /* 52 */ 
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+  II (a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */ 
+  II (d, a, b, c, x[ 3], S42, 0x8f0ccc92); /* 54 */ 
+  II (c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */ 
+  II (b, c, d, a, x[ 1], S44, 0x85845dd1); /* 56 */ 
+  II (a, b, c, d, x[ 8], S41, 0x6fa87e4f); /* 57 */ 
+  II (d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */ 
+  II (c, d, a, b, x[ 6], S43, 0xa3014314); /* 59 */ 
+  II (b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */ 
+  II (a, b, c, d, x[ 4], S41, 0xf7537e82); /* 61 */ 
+  II (d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */ 
+  II (c, d, a, b, x[ 2], S43, 0x2ad7d2bb); /* 63 */ 
+  II (b, c, d, a, x[ 9], S44, 0xeb86d391); /* 64 */ 
+ 
+  state[0] += a; 
+  state[1] += b; 
+  state[2] += c; 
+  state[3] += d; 
+ 
+  /* Zeroize sensitive information. */ 
+  memset ((POINTER)x, 0, sizeof (x)); 
+} 
+ 
+/* 
+ * Encodes input (UINT4) into output (unsigned char). Assumes len is 
+ * a multiple of 4. 
+ */ 
+void Encode(unsigned char *output, UINT4 *input, unsigned int len) 
+{ 
+  unsigned int i, j; 
+ 
+  for (i = 0, j = 0; j < len; i++, j += 4) { 
+ output[j] = (unsigned char)(input[i] & 0xff); 
+ output[j+1] = (unsigned char)((input[i] >> 8) & 0xff); 
+ output[j+2] = (unsigned char)((input[i] >> 16) & 0xff); 
+ output[j+3] = (unsigned char)((input[i] >> 24) & 0xff); 
+  } 
+} 
+ 
+/* 
+ * Decodes input (unsigned char) into output (UINT4). Assumes len is 
+ * a multiple of 4. 
+ */ 
+void Decode ( 
+UINT4 *output, 
+unsigned char *input, 
+unsigned int len) 
+{ 
+  unsigned int i, j; 
+ 
+  for (i = 0, j = 0; j < len; i++, j += 4) 
+ output[i] = ((UINT4)input[j]) | (((UINT4)input[j+1]) << 8) | 
+   (((UINT4)input[j+2]) << 16) | (((UINT4)input[j+3]) << 24); 
+} 
+ 
+/* RFC 2202 HMAC-MD5 */ 
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+ 
+#define MD5_DIGESTSIZE  16 
+#define MD5_BLOCKSIZE   64 
+ 
+#ifdef __cplusplus 
+extern "C" { 
+#endif 
+ 
+#ifdef __cplusplus 
+} 
+#endif 
+ 
+ 
+/* RFC 2202 HMAC-MD5 */ 
+ 
+void truncate 
+( 
+unsigned char*   d1,   /* data to be truncated */ 
+unsigned char*   d2,   /* truncated data */ 
+int     len   /* length in bytes to keep */ 
+) 
+{ 
+       int     i ; 
+       for (i = 0 ; i < len ; i++) d2[i] = d1[i]; 
+} 
+ 
+ 
 extern void InvalidExecHandler(); 
  
 // Compare code segments by name 
@@ -1790,6 +2154,183 @@ 
  return r; 
  } 
  
+  
+/** Code White - Checks to see if loading code is trusted. 
+ 
+ Capt Joe Hinson, Air Force Institute of Technology, July 2010 
+ 
+ Calculates HMAC of loading code section and searches for the HMAC 
in a file 
+ of trusted HMACs (hmacs.txt).  The HMAC of the hmacs.txt file is 
also 
+ calculated and checked against its known HMAC.  Based on the 
outcome of the 
+ two comparisons, the global flag 'AllowExecution' is set to 
signal whether 
+ the process will be allowed to execute (done during 
E32Loader::ProcessLoaded). 
+  
+ @param aInfo  Information about the loading process. 
+ @param aCodeInfo Information about the buffers containing 
the code section 
+      and HMAC list that are to be 
checked. 
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+      aCodeInfo.iCLA - address of user 
heap buffer containing code 
+      aCodeInfo.iSize - size of loading 
code section 
+      aCodeInfo.iHmacList - addr of user 
heap buffer containing list 
+      aCodeInfo.iHLSize - size of hmac 
list 
+ 
+ */ 
+TInt ExecHandler::CodeCheck(TProcessCreateInfo& aInfo, TCodeInfo* 
aCodeInfo)  
+ { 
+ K::CheckFileServerAccess();   // only F32 can use 
this exec function 
+ TInt IllegalHmacList=0; 
+ TInt HmacIsAMatch=0; 
+ TProcessCreateInfo info; 
+ kumemget32(&info, &aInfo, sizeof(info)); 
+ TCodeInfo CInfo; 
+ kumemget32(&CInfo, aCodeInfo, sizeof(CInfo)); 
+ 
+ Kern::Printf("%S", &info.iFileName); 
+ 
+ //Create Heap buffer for code section 
+ NKern::ThreadEnterCS(); 
+ TUint8* HashBlock=new TUint8[CInfo.iSize]; 
+ NKern::ThreadLeaveCS(); 
+ if (!HashBlock) 
+  return KErrNoMemory; 
+ //Use kumemget to move code from user heap to kernel heap 
+ kumemget(HashBlock, CInfo.iCLA, CInfo.iSize); 
+ 
+ 
+ 
+ //Create Heap buffer for hmacs list 
+ NKern::ThreadEnterCS(); 
+ TUint8* HmacsList=new TUint8[CInfo.iHLSize]; 
+ NKern::ThreadLeaveCS(); 
+ if (!HashBlock) 
+  return KErrNoMemory; 
+ //Use kumemget to move code from user heap to kernel heap 
+ kumemget(HmacsList, CInfo.iHmacList, CInfo.iHLSize); 
+  
+ //Print proof of successful copy if needed 
+ //TPtr8 HLptr(HashBlock, 20, 20); 
+ //TBuf8<20> printbuf; 
+ //printbuf.Copy(HLptr); 
+ //Kern::Printf("Buf is %S",&printbuf); 
+ _LIT8(KHmacListHmac, 
"\x07\x44\xD8\xC6\x32\x1B\x44\x34\x74\x65\x89\x66\x34\x51\xB7\x4E");//h
mac of hmacs.txt 
+   
+ TPtrC8 HLH(KHmacListHmac); 
+  
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+ unsigned char g_key[] = "123456789012345678901234567890AB"; 
+ unsigned char codehmac[MD5_DIGESTSIZE]; 
+ unsigned char listhmac[MD5_DIGESTSIZE]; 
+ char* k = (char*)g_key; 
+ int lk = 32; 
+ int t = MD5_DIGESTSIZE; 
+ char* d = (char*)HmacsList;  //pointer to list of HMACs 
+ int ld = CInfo.iHLSize;  //size of the list 
+ char* out = (char*)listhmac; //will hold the list's computed HMAC 
+ TInt n; 
+ 
+ //compute hmacs 
+ for (n=0; n<2; n++) //compute hmac of hash list when n=0 
+  { 
+   
+  if (n) //compute hmac of code section when n=1 
+   { 
+   d = (char*)HashBlock; //location of the code to be 
hashed 
+   ld = CInfo.iSize; //size of the code 
+   out = (char*)codehmac; //will hold the code's 
computed hmac 
+   } 
+ 
+  MD5_CTX ictx, octx ; 
+  unsigned char    imd5[MD5_DIGESTSIZE], omd5[MD5_DIGESTSIZE] 
; 
+  unsigned char    key[MD5_DIGESTSIZE] ; 
+  unsigned char    buf[MD5_BLOCKSIZE] ; 
+  int     i ; 
+ 
+  if (lk > MD5_BLOCKSIZE) { 
+ 
+   MD5_CTX         tctx ; 
+ 
+   MD5Init(&tctx) ; 
+   MD5Update(&tctx, (unsigned char*)k, lk) ; 
+   MD5Final(key, &tctx) ; 
+ 
+   k = (char*)key ; 
+   lk = MD5_DIGESTSIZE ; 
+   } 
+ 
+  /**** Inner Digest ****/ 
+ 
+  MD5Init(&ictx); 
+ 
+  /* Pad the key for inner digest */ 
+  for (i = 0 ; i < lk ; ++i) buf[i] = k[i] ^ 0x36 ; 
+  for (i = lk ; i < MD5_BLOCKSIZE ; ++i) buf[i] = 0x36 ; 
+ 
+  MD5Update(&ictx, buf, MD5_BLOCKSIZE) ; 
+  MD5Update(&ictx, (unsigned char*)d, ld) ; 
+ 
+  MD5Final(imd5, &ictx) ; 
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+ 
+  /**** Outter Digest ****/ 
+ 
+  MD5Init(&octx) ; 
+ 
+  /* Pad the key for outter digest */ 
+ 
+  for (i = 0 ; i < lk ; ++i) buf[i] = k[i] ^ 0x5C ; 
+  for (i = lk ; i < MD5_BLOCKSIZE ; ++i) buf[i] = 0x5C ; 
+ 
+  MD5Update(&octx, buf, MD5_BLOCKSIZE) ; 
+  MD5Update(&octx, imd5, MD5_DIGESTSIZE) ; 
+ 
+  MD5Final(omd5, &octx) ; 
+ 
+  /* truncate and print the results */ 
+  t = t > MD5_DIGESTSIZE ? MD5_DIGESTSIZE : t ; 
+  truncate(omd5, (unsigned char*)out, t) ; 
+   
+  if (!n) 
+   { 
+   TPtr8 hlhptr(listhmac,MD5_DIGESTSIZE, 
MD5_DIGESTSIZE); 
+   IllegalHmacList=hlhptr.Compare(HLH); 
+   //Kern::Printf("IllegalHmacList=%d", 
IllegalHmacList); 
+   } 
+ 
+  } 
+ TPtrC8 codehmacptr(codehmac, MD5_DIGESTSIZE); //pointer to hmac 
of the code  
+ TPtrC8 listptr(HmacsList, CInfo.iHLSize); //pointer to the list 
+ TPtrC8 listhmacptr(listhmac, MD5_DIGESTSIZE); 
+ TInt r=listptr.Find(codehmacptr); 
+ if (r!=KErrNotFound) 
+  HmacIsAMatch=1; 
+  
+ //print code hmac if needed 
+ //TBuf8<MD5_DIGESTSIZE> hmacbuf; 
+ //hmacbuf.Copy(codehmacptr); 
+ //Kern::Printf("code hmac = %S",&hmacbuf); 
+ //TBuf8<MD5_DIGESTSIZE> listbuf; 
+ //listbuf.Copy(listhmacptr); 
+ //Kern::Printf("list hmac = %S",&listbuf); 
+ 
+ //clean up the heap 
+ NKern::ThreadEnterCS(); 
+ delete[] HashBlock; 
+ NKern::ThreadLeaveCS(); 
+ 
+ NKern::ThreadEnterCS(); 
+ delete[] HmacsList; 
+ NKern::ThreadLeaveCS();  
+ 
+ extern TUint AllowExecution; 
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+ extern TUint HasBeenSet; 
+ Kern::Printf("IllegalHmacList=%d HmacIsAMatch=%d 
AllowExecution=%d HasBeenSet=%d", IllegalHmacList, HmacIsAMatch, 
AllowExecution, HasBeenSet);  
+ if (IllegalHmacList!=0 || HmacIsAMatch!=1) 
+  AllowExecution=0; 
+ if (IllegalHmacList==0 && HmacIsAMatch==1 && HasBeenSet==0) 
+  AllowExecution=1; 
+ Kern::Printf("IllegalHmacList=%d HmacIsAMatch=%d 
AllowExecution=%d HasBeenSet=%d", IllegalHmacList, HmacIsAMatch, 
AllowExecution, HasBeenSet); 
+ HasBeenSet=1; 
+  
+ return KErrNone; 
+ } 
+  
 TInt ExecHandler::ProcessLoaded(TProcessCreateInfo& aInfo) 
  { 
  TProcessCreateInfo info; 
diff -r 2ee5df201f60 kernel/eka/kernel/sprocess.cpp 
--- a/kernel/eka/kernel/sprocess.cpp Mon Mar 08 11:58:34 2010 
+0000 
+++ b/kernel/eka/kernel/sprocess.cpp Thu Aug 26 11:46:14 2010 -
0400 
@@ -159,6 +159,12 @@ 
 
 BTrace8(BTrace::EThreadPriority,BTrace::EProcessPriority,this,iPr
iority); 
 #endif 
  iId = K::NewId(); 
+  
+ extern TUint AllowExecution; //Code White - Initialize 
AllowExecution & HasBeenSet 
+ extern TUint HasBeenSet; 
+ AllowExecution=0; 
+ HasBeenSet=0; 
+   
  iCreatorId = iId;  // Initialise as self for safety because 
creator has special capabilities 
  if(TheSuperPage().KernelConfigFlags() & 
EKernelConfigPlatSecProcessIsolation) 
   { 
diff -r 2ee5df201f60 kernel/eka/memmodel/epoc/multiple/mprocess.cpp 
--- a/kernel/eka/memmodel/epoc/multiple/mprocess.cpp Mon Mar 08 
11:58:34 2010 +0000 
+++ b/kernel/eka/memmodel/epoc/multiple/mprocess.cpp Thu Aug 26 
11:46:14 2010 -0400 
@@ -20,6 +20,9 @@ 
 #include "cache_maintenance.h" 
 #include <demand_paging.h> 
  
+TUint AllowExecution; //Code White global flags 
+TUint HasBeenSet; 
+ 
 #define iMState  iWaitLink.iSpare1 
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 // just for convenience... 
@@ -533,7 +536,17 @@ 
     LOCK_USER_MEMORY(); 
     } 
    } 
-  if(r!=KErrNone) 
+  if(!aLoading)  //Code White - If in ProcessLoaded and not 
trusted, set permissions to same as user data (includes XN bit) 
+   { 
+   if (!AllowExecution) 
+    { 
+    TPte perm=0x83f; 
+    iCodeChunk->ApplyPermissions(offset, codeSize, 
perm); 
+    Kern::Printf("Execution disallowed for iId 
%08x!", iId); 
+    } 
+   } 
+ 
+   if(r!=KErrNone) 
    { 
    // error, so decommit up code pages we had already 
committed... 
    DChunk::TDecommitType decommitType = paged ? 
DChunk::EDecommitVirtual : DChunk::EDecommitNormal; 
diff -r 2ee5df201f60 userlibandfileserver/fileserver/sfile/sf_lepoc.cpp 
--- a/userlibandfileserver/fileserver/sfile/sf_lepoc.cpp Mon Mar 08 
11:58:34 2010 +0000 
+++ b/userlibandfileserver/fileserver/sfile/sf_lepoc.cpp Thu Aug 26 
11:46:14 2010 -0400 
@@ -33,6 +33,7 @@ 
 #include <e32uid.h> 
 #include <e32rom.h> 
 #include "sf_cache.h" 
+#include <hal.h> 
  
 #include "sf_pgcompr.h" 
  
@@ -1540,10 +1541,10 @@ 
  iS = aFinder.iNew.iS; 
  
  // check if executable has already been loaded... 
- r = CheckAlreadyLoaded(); 
- if(r!=KErrNone) 
-  return r; 
- 
+ //r = CheckAlreadyLoaded();  
+ //if(r!=KErrNone) 
+ // return r; 
+ iAlreadyLoaded=0; //Code White - force all applications to load 
from file - even if loading multiple instances 
  // if we are going to need to load it... 
  if(!iAlreadyLoaded || !iIsDll) 
   { 
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@@ -1632,9 +1633,11 @@ 
   __IF_DEBUG(Printf("%S is not marked SMP safe", 
&iFileName)); 
   iAttr &= ~ECodeSegAttSMPSafe; 
   } 
- 
+ if (iHeader->iCompressionType!=KFormatNotCompressed) //Code White 
- only support uncompressed files 
+  return KErrNotSupported;   
  // check if executable is to be demand paged... 
- r = ShouldBeCodePaged(iUseCodePaging); 
+ //r = ShouldBeCodePaged(iUseCodePaging);  
+ iUseCodePaging=EFalse;  
  __IF_DEBUG(Printf("ShouldBeCodePaged r=%d,iUseCodePaging=%d", r, 
iUseCodePaging)); 
  if(iUseCodePaging==EFalse || r!=KErrNone) 
   return r; 
@@ -2076,6 +2079,59 @@ 
   TInt r = iFile.Read(aPos,p,aSize); 
   if(r!=KErrNone) 
    return r; 
+    
+  //Code White - Read code section into heap buffer 
+  //Create buffer and descripter to point to it 
+  if (aPos==0x9C) 
+   { 
+   TUint8* codebuf=new TUint8[aSize]; 
+   TPtr8 codebufptr((TUint8*)codebuf,aSize,aSize); 
+    
+   //Read code section 
+   iFile.Read(aPos, codebufptr, aSize); 
+   
+   //Print proof if needed 
+   //TPtr8 bufprnt(codebuf,20, 20); 
+   //RDebug::Printf("buf:%S",&bufprnt);  
+   
+    
+   //Read Hmacs file into heap buffer pointed to by 
codeInfo.iHmacList 
+   RFs hfs; 
+   hfs.Connect(); 
+   _LIT(KHmacsFile,"s:\\sys\\bin\\hmacs.txt"); 
+   RFile HmacsFile; 
+   //open the hmac file 
+   TInt h = 
HmacsFile.Open(hfs,KHmacsFile,EFileShareExclusive|EFileRead); 
+   if (h!=KErrNone) 
+    { 
+    RDebug::Printf("Couldn't open hmacs.txt - %d", 
h); 
+    return h; 
+    } 
+   TInt fsize; 
+   HmacsFile.Size(fsize); 
+   TUint8* hmacslist=new TUint8[fsize]; 
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+   TPtr8 hmacsptr((TUint8*)hmacslist,fsize,fsize); 
+   HmacsFile.Read(0, hmacsptr, fsize); 
+   HmacsFile.Close(); 
+   hfs.Close(); 
+ 
+   //Prep codeInfo to pass to CodeCheck 
+   TCodeInfo codeInfo; 
+   codeInfo.iSize=iCodeSize; 
+   codeInfo.iCLA=codebuf;//CodeForHmac; 
+   codeInfo.iHmacList=hmacslist; 
+   codeInfo.iHLSize=fsize; 
+   TCodeInfo* CIPtr = &codeInfo;   
+   
+   //Call CodeCheck and pass the buck to kernel mode 
+   TInt t=E32Loader::CodeCheck(*this, CIPtr); 
+   if (t!=KErrNone) 
+    return r; 
+     
+   delete[] codebuf; 
+   delete[] hmacslist; 
+   } 
+   //end  
   } 
  
  // check we got the amount of data requested... 
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